Administration Model for Or-BAC

Frédéric Cuppens! and Alexandre Miege??

! GET/ENST Bretagne/Département RSM,
BP 78, 2 rue de la Chataigneraie, 35512 Cesson Sévigné Cedex, France
frederic.cuppens@enst-bretagne.fr
2 ENST,
46, rue Barrault, 75634 Paris Cedex 13, France
alexandre.miege@cert.fr
3 ONERA/DTIM Centre de Toulouse,
BP4025, 31055 Toulouse Cedex 4, France

Abstract. Even though the final objective of an access control model
is to provide a framework to decide if actions performed by subjects on
objects are permitted or not, it is not convenient to directly specify an
access control policy using concepts of subjects, objects and actions. This
is why the Role Based Access Control (RBAC) model suggests using a
more abstract concept than subject to specify a policy. The Organization
Based Access Control (Or-BAC) model further generalizes the RBAC
model by introducing the concepts of activity and view as abstractions
of action and object. In the Or-BAC model, it is also possible to specify
privileges that only apply in some given contexts.

In this paper, we present AdOr-BAC, an administration model for Or-
BAC. This model is fully homogeneous with the remainder of Or-BAC.
AdOr-BAC can control assignment of user to role (User Role Administra-
tion), assignment of permission to role (Permission Role Administration)
and assignment of user to permission (User Permission Administration).
This last possibility is useful to control fine grained delegation, when a
user wants to grant a specific permission to another given user. AdOr-
BAC is compared with other administration models, such as the ARBAC
model suggested for RBAC, showing some of its advantages.

1 Introduction

The final objective of an access control policy is to specify the permissions,
obligations and prohibitions that control the actions performed by subjects on
objects. However, when defining its access control policy, an organization does not
directly specify that a given subject (for instance John) is permitted to perform
a given action (for instance read) on a given object (for instance Jack’s medical
record). Organization based access control policies never mention that they apply
to specific subjects, actions or objects. Instead, they use more abstract concepts
such as the concept of role [14,7]. In this case, the access control policy does
not directly grant permissions to subjects but to roles. A given subject will then
obtain permissions by playing roles, in which case this user will inherit all the

permissions associated with these roles. In [3], the Organization Based Access
Control (Or-BAC) model is defined and it is argued that similar abstractions
should be associated with actions and objects. For this purpose, the Or-BAC
model introduces the abstract concepts of activities and views. In Or-BAC, the
access control policy defines permissions (or obligations or prohibitions) that
control the activities performed by roles on views. For instance, the policy might
specify that role physician has permission to perform activity consult on view
medical record*. We can then derive that user John is permitted to perform
action read on object Jack_med_record if John is playing the role physician, read
is an action that corresponds to the activity consult and object Jack_med_record
belongs to the view medical record.

A complete access control model must provide an administration model. For
instance, the Role Based Access Control (RBAC) model is associated with the
ARBAC97 model [11], further refined in the ARBAC99 [13] and ARBACO02 [9]
models. The ARBAC model includes two main components:

— The URA (User Role Administration) model to control who is permitted to
assign a user with a new role and who is permitted to revoke a user from an
existing role.

— The PRA (Permission Role Administration) model to control who is permit-
ted to assign a role with a new permission and who is permitted to revoke a
role from an existing permission.

The RBAC model also includes the RRA component for Role-Role Administra-
tion to manage the role hierarchy.

The objective of this paper is to present an administration model for the Or-BAC
model called AdOr-BAC. The AdOr-BAC model includes three main compo-
nents: URA, PRA and UPA (for User Permission Administration). The objective
of the URA and PRA components is similar to components with similar names
already defined in the RBAC model, but the model we suggest in AdOr-BAC
is different. This model is fully homogeneous with the remainder of Or-BAC. In
particular, the syntax used to specify permissions in the URA and PRA models
is similar to the one suggested in the Or-BAC model. We shall see that this
approach has several advantages over the ARBAC model. The UPA component
does not exist in the ARBAC model. It is useful when a given user wants to grant
a permission to another given user. For instance, John (a physician) may want
to grant to Jane (his secretary) a permission to have an access to Jack’s medical
record. The UPA model applies in this case. It is used to specify that subjects
playing the role of physician are permitted to grant to other subjects playing the
role of medical secretary a permission to have an access to objects belonging to
the view medical record. Notice that, using UPA, we can also specify that sub-
jects playing the role physician are forbidden to grant a permission to subjects
playing another role than medical secretary, for instance journalist or insurer.

4 Actually, the Or-BAC model allows the administrators to specify more complex
permissions since one can consider that each permission only applies in some given
contexts (see section 3 for further details).

Notice also that the PRA model does not apply in this case since the general
permissions of role medical secretary do not change, only Jane’s permissions are
updated.

The remainder of this paper is organized as following. In section 2, we present
ARBAC, the administration model suggested for RBAC, and discuss some of its
weaknesses. Section 3 briefly recalls the Or-BAC model. Section 4 presents the
AdOr-BAC model that is used to administer the Or-BAC model. Finally section
5 concludes the paper.

2 ARBAC

The Role-Based Access Control (RBAC) model [6,8,14] aims to use the role
as a central concept. Ravi Sandhu proposed an administration model, ARBAC,
dedicated to the management of a RBAC policy.

ARBACY97: ARBACO7 [11] is the first RBAC administration model. ARBAC
has two main features. First, it provides the possibility of administrating an
RBAC policy in a decentralized, but without loosing the control over rights’
propagation. Second, though the administrative roles and permissions are based

on RBAC, they are completely separated from the regular roles and permissions.
ARBAC97 provides three sub-models:

— URA97 [10]. This model describes how to assign users to the predefined roles.
The assignment by an administrative role of a user to a regular role is based
on a ternary relation “can_assign” between the administrative role, the pre-
requisites roles and the regular role. That is, a member of an administration
role can assign a user to a regular role if this user satisfies the condition
corresponding to the prerequisite roles.

— PRA97 [11]. This model is the dual of URA97 and it describes the assignment
of permissions to roles. It is also based on a ternary relation with prerequisite
conditions.

— RRA97 [12]. This last model proposed rules for the role-role assignment,
that is the construction of the role hierarchy.

Therefore, ARBAC97 offers a proper administration model which is not exactly
the case for the other security models. In order to obtain a decentralized ad-
ministration of a RBAC policy, it could be used this way: The management of
the role hierarchy and the assignment of the permissions is carried out by a
centralized authority on the one hand. On the other hand, the assignment and
the revocation can be left under the responsibility of the chiefs of the different
departments or units, through the assignment of these chiefs to administrative
roles.

However, it is noteworthy to point out the following shortcomings. ARBAC
claims that it is an auto-administrated model. This is not completely true be-
cause it does not use the RBAC model to define administrative permissions.
Instead, it creates new assignment and revocation rules (such as can_assign and

can_revoke) used by the administrative roles. These rules are distinct from the
approach suggested in RBAC to define permissions associated with regular roles.
As we mentioned, the assignment relation is ternary. Thus the prerequisite con-
ditions depend on the administrative role and the regular role. However, it seems
that the prerequisite conditions generally depend logically and only on the reg-
ular role and should rather be considered as a constraint on the regular role.
Moreover, ARBAC does not give any information on the creation of the roles,
and does not offer any delegation mechanism. Since ARBAC97, a proposal has
been made to manage delegation in RBAC model through RBDM [1]. Delegation
will be further discussed in section 4.4.

ARBAC does not offer means to express contextual conditions. Thus, it is not
possible to express that a given administrative role is permitted to assign a
permission to a regular role only at working hours or only from his own terminal.
This kind of restrinction can be usefull to detect administrator’s abuse of power
for instance.

ARBAC extensions: Two ARBAC extensions have been proposed. AR-
BAC99 [13] presents a way to manage the mobile and immobile users and per-
missions. Unlike a mobile user, an immobile user can be seen as a non-permanent
user such as a user under training, a visitor, a consultant, etc. In this case, the
user can be a member of a role and get the corresponding permissions. But an
administrative role cannot use this membership to put the immobile user into
other roles. That is, an immobile user cannot climb the hierarchy. The same idea
is used for the immobile permissions.

The objective of ARBACO02 [9] is different. Several weaknesses of ARBAC97
have been pointed out. Through ARBAC02 some improvements were proposed
to resolve, among others, the multi-step user assignment which generate a lot
of work for the security officers and which causes redundant tuples in the URA
management. The main modification made in ARBACO02 affects the prerequisite
conditions for the user and the permission assignment. An organization structure
of user pool and an organization structure of a permission pool are created. The
first one is managed by the human resources group, the second one by the IT
group. We obtain two hierarchies independent from the role hierarchy. User
and permission assignment is made by the security officers by picking user and
permissions in these pools. This simplifies the assignment processes.

These two extensions of ARBAC97 are interesting but do not answer the short-
comings we have just mentioned. Moreover ARBACO02 simplifies the assignment
process, but transfer the problem of the prerequisite conditions onto the human
resources group and the I'T group.

SARBAC (Scoped Administration of Role-Based Access Control) [2] suggests an
extension of RRA97, called RHA,4, and an alternative to ARBAC97. SARBAC
relies on administrative scope which changes dynamically as the role hierarchy
changes. Thus, update operations over RBAC96 and SARBAC relations become
easier and cannot lead to inconsistent rules. In particular, SARBAC makes it
possible to delete a role without any restriction. Unlike in ARBAC97, it is pos-

sible to assign administrative roles to users as SARBAC does not make any
distinction between regular and administrative roles.

3 Or-BAC

Before presenting the administration model for the Or-BAC model, we shall
briefly recall the main components of this model (see [3] for further details). The
most important entity in Or-BAC is the entity Organization. Roughly speaking,
an organization can be seen as an organized group of subjects, playing some role
or other. Notice that a group of subjects does not necessarily correspond to
an organization. More precisely, the fact that each subject plays a role in the
organization corresponds to some agreement between the subjects to form an
organization.

In the organization, subjects will request to perform actions on objects and,
as mentioned in the introduction, the final objective of an access control policy is
to decide if these requests are permitted or not. In the Or-BAC model, a subject
will be either an active entity, i.e. a user, or an organization. Actions will mainly
correspond to concrete computer actions such as “read”, “write”, “send”, etc.

However, permission in the Or-BAC model does not directly apply to subject,
action and object. Instead, subject, action and object are respectively abstracted
into role, activity and view. A view corresponds to a set of objects that satisfy
a common property. Similarly, an activity will join actions that partake of the
same principles.

A given access control policy is then specified by a set of facts having the
form:> Permission(org, role, activity, view, context). These facts specify that,
in organization org, a given role is permitted to perform a given activity on a
given view in a given context. Examples of context may be Night, Working-Hours
or Urgency (see section 3 for further details about the context definition).

Specifying the access control policy by facts is an important difference com-
pared with other approaches based on logical rules, such as Ponder [5]. This will
represent a major advantage when we shall define how to administer Or-BAC
(see section 4). Notice that the specification of the security policy is parameter-
ized by the organization so that it is possible to handle simultaneously several
security policies associated with different organizations.

Basic concepts of Or-BAC: In Or-BAC, there are height basic sets of enti-
ties: Org (a set of organizations), S (a set of subjects), A (a set of actions), O
(a set of objects), R (a set of roles), A (a set of activities), V (a set of views)
and C (a set of contexts).

We shall assume that Org C S (that is any organization is a subject) and
that S C O (that is any subject is an object). Any entities in the Or-BAC model
may have some attributes. This is represented by functions that associate the

® Actually, in [3], it is also possible to specify prohibitions and obligations using Or-
BAC. Here, for the sake of simplicity, we shall only consider permissions. This is
mainly to eliminate the problem of conflicts between permission and prohibition.
However, we plan to analyze this problem of conflict in a forthcoming paper.

entities with the value of these attributes. For instance, if s is a subject, then
name(s) represents the name of s, address(s) its address, etc.

Modelling the organization components: In the organization, subjects are
empowered in roles, objects are used into views and actions fall within activities.
This is represented by the following relationships:

— Empower is a relation over domains Org x S x R. If org is an organization,
s a subject and r a role, then Empower(org, s,r) means that org empow-
ers subject s in role r. Unlike the TMAC model or the RBAC model which
consider binary relations between organizations and subjects or between sub-
jects and roles, notice that our model consider a ternary relation between
organizations, subjects and roles. This is useful to model situations where a
given subject plays several roles but in different organizations. Let us also
remark that subjects might be users as well as organizations.

— Use is a relation over domains Org x O x V. If org is an organization,
o is an object and v is a view, then Use(org,o,v) means that org uses
object o0 in view v. This ternary relation makes ourselves able to characterize
organizations that give different definitions to the same view. For instance,
take the case of the view “medical record” defined in Purpan hospital as a
set of Word documents and defined in Rangueil hospital as a set of tuples in
a relational database.

— Consider is a relation over domains Org x A x A. If org is an organization,
« is an action and a is an activity, then Consider(org, a, a) means that org
considers that action « falls within the activity a. Since Consider is a ternary
relation, different organizations may decide that one and the same action
comes under distinct activities or that different actions come under the same
activity. For instance, activity “consulting” corresponds, in Purpan hospital,
to an action “read” that can be ran on data files whereas it corresponds,
in Rangueil hospital, to action “select” that can be performed on relational
databases.

Context definition: Contexts are used to specify the concrete circumstances
where organizations grant roles permissions to perform activities on views. In
the health care domain, the entity Context will cover circumstances such as
“urgency”, “industrial medicine”, “attending physician”, etc. Every context can
be seen as a ternary relation between subjects, objects and actions defined within
a given organization. Therefore, entities Organization, Subject, Object, Action
and Context are linked together by the relationship De fine:

— Define is a relation over domains Org x S x A x O x C If org is an orga-
nization, s is a subject, « is an action, o is an object and ¢ a context, then
Define(org, s, a,o0,c) means that within organization org, context ¢ holds
between subject s, action a and object o.

The conditions required for a given context to be linked, within a given
organization, to subjects, objects and actions will be formally specified by logical
rules. For instance, we may define the context Night as follows:®

— Vs, Va,Vo,Ver,Veq, (Define(H1, s, a, 0, Night)
— (20 : 00 < time(global_clock) V time(global_clock) < 8 : 00))
that is, in H1, the context “night” is true between subject s, action o and
object o between 20:00 and 8:00.

In the following, we shall use another context called “default”. This context
is true in every circumstance. It is defined as follows:

— Yorg,Vs,Va, Vo, Define(org, s, a, o, De fault)
that is, in every organization org, the context “default” is always true be-
tween subject s, action o and object o.

Policy definition: In the Or-BAC model, the access control policy is defined
using the relationship Permission as follows:

— Permission is a relation over domains Org Xx R x A x V x C, If org is
an organization, r is a role, a is an activity, v is a view and ¢ a context
then Permission(org,r,a,v,c) means that organization org grants role r
permission to perform activity a on view v within context c.

Deriving concrete permission: The relationship Permission enables a given
organization to specify permissions between roles, activities and views in a given
context. However, an access control model must provide a framework for de-
scribing the concrete actions that may be performed by subjects on objects. For
the purpose of modelling concrete permissions, we introduce the relationship
Is_permitted as a relationship between subjects, actions and objects:

— Is_permitted is a relation over domains S x A x O
If s is a subject, « is an action and o is an object then Is_permitted(s, «, o)
means that subject s is permitted to perform action o on object o.

In our model, triples that are instances of the relationship Is_permitted are
logically derived from permissions granted to roles, views and activities by the
relationship Permission. This is modelled by the following general rule:

— Yorg, Vs, Vo,Va,Vr, Vv, Va, Ve,
Permission(org,r,a,v,c)A
Empower(org, s,r) A Use(org,o,v) A Consider(org, a, a)A
Define(org, s, a,0,c) — Is_permitted(s, a, o)

5 In the remainder of this paper, we shall use a logical notation to represent relation-
ship: if R is a n-ary relationship over domains D; X ... X Dy, then the predicate
R(d1,...,dy) is true if and only if (di,...,dn) € R.

that is, if organization org, within the context ¢, grants role r permission to
perform activity a on view v, if org empowers subject s in role r, if org uses
object o in view v, if org considers that action « falls within the activity
a and if, within org, the context c¢ is true between s, a and o then s is
permitted to perform « on o.

Notice that we do not assume that all instances of relationship Is_permitted
comes from the specification of relationship Permission. This means that there
may exist other instances of relationship Is_permitted. These instances may be
viewed as exceptions to the general security policy specified by the relationship
Permission. This will be used in UPA (see section 4.4) when a user wants to
grant a specific permission to another given user.

Notice that in [3], it is also suggested to define hierarchies over roles (as in the
RBAC model) but also organization, activity and view, and to associate permis-
sion inheritance with these different hierarchies. However, since this possibility
will not be used in the remainder of this paper, we prefer to omit it.

4 AdOr-BAC: an administration model for Or-BAC

4.1 Introduction

The objective of this section is to define an administration model for Or-BAC,
called AdOr-BAC. A complete administration model should provide means to
control the following activities: management” of organizations, management of
roles, activities, views and contexts, assignment (and revocation) of users to roles,
assignment (and revocation) of permissions to roles, assignment (and revocation)
of users to permissions.

Due to space limitation, we focus in this paper on the user-role assignment, the
permission-role assignment and the user-permission assignment. The approach
we suggest in AdOr-BAC is to define these administration functions by con-
sidering three different views respectively called URA, PRA and UPA. Each
organization will manage such views. Objects belonging to these views have spe-
cific semantics; namely they will be respectively interpreted as an assignment of
user to a role, a permission to role and a permission to a user.

Intuitively, inserting an object in these views will enable an authorized user to
respectively assign a user to a role, assign a permission to a role or assign a
permission to a user. Conversely, deleting an object from these views will enable
a user to perform a revocation.

Defining the administration functions in AdOr-BAC then corresponds to define
which roles is permitted to have an access to views URA, PRA and UPA, or
to more specific views when the role has not a complete access to one of these
views. For instance, the role physician may be only permitted to assign users
to the role medical secretary. In this case, the role physician will have not a
complete access to the view URA, but only to the sub-part corresponding to the
role medical secretary.

" By manage, we mean create, delete and update.

The approach we suggest is homogeneous with the remainder of the Or-BAC
model. The syntax we use in AdOr-BAC to define permission to administer
the policy is completely similar to the remainder of Or-BAC. Actually, strictly
speaking, it is even incorrect to consider that AdOr-BAC is a distinct model
from Or-BAC. Since, we have simply to consider three new views, namely URA,
PRA and UPA in the Or-BAC model, it would be more appropriate to say that
Or-BAC is an auto-administered model. In the following we shall present the
structure of these three views and further analyze the administration functions
associated with management of these views.

Notice that, in the ARBAC model, there are two types of fully separated roles
called regular roles and administration roles. Administration roles are only per-
mitted to perform administration functions and regular roles are only permit-
ted to perform other functions excluding administration functions. In some cir-
cumstances this separation is superfluous. For instance the role physician may
hold a plurality of administrative and non administrative permissions. In such
case, it is not necessary to create two roles, this is, a role physician and a
role admnistration_physician. The AdOr-BAC model does not impose to cre-
ate these two roles. But, as a security policy designer could legitimatly want to
separate them anyway, because of separation of duty and least privilege ques-
tions, the AdOr-BAC model makes it possible to do so. Thus, we leave such
separation optional in the AdOr-BAC model. Keeping this separation makes
The AdOr-BAC model compliant with ARBAC.

4.2 URA in AdOr-BAC

The view URA: The aim of the user-role administration is to determine who

is allowed to assign a user to a role and on which conditions. Assigning a user to

a role equals adding a new object in a given view called U RA. Three attributes

are associated with this view: subject to designate the subject which is related

to the assignment, role that corresponds to the role to which the subject will be
assigned and org to represent the organization in which the subject is assigned

We consider the function associated to these three attributes. For example, if a
security officer is allowed to assign a user to the role physician in the department

of cardiology cardio_dpt of its hospital H, we can create the U RA_physician_cardio_dpt
view. This view is defined as follows:

— Yura
Use(H,ura,URA_physician_cardio_dpt) —
Use(H,ura,URA) A role(ura) = physician A org(ura) = cardio_dpt

In the Or-BAC model, an organization empowers a user in a role. It is char-
acterized by the relationship Empower. Therefore, there is a link between the
object belonging to the view URA and the relationship Empower. This link is
modelled through the following rule:

— Yorg,VYura,Use(org,ura,URA)
— Empower(org(ura), subject(ura), role(ura))

10

It means that a user empowered in a given organization corresponding to org can
manage user-role assignment of another organization (corresponding to org(ura)).
For instance, org might be the human resources department of a given company
and org(ura) might be the different departments of this company.

The activity manage: The view URA makes it possible to model the assign-
ment of a user to a role. We have to consider now the activity that corresponds
to the permission of assigning someone. We call assign this activity. The per-
mission granted to the role sec_of ficer to assign a user to the role physician in
the department of cardiology cardio_dpt of its hospital H is expressed as follows:

— Permission(H, sec_of ficer,assign,URA_physician_cardio_dpt, De f ault)

Up to now, we have only dealt with assignment but not with revocation. Notwith-
standing it is easy to create the activity revoke in the way as the activity assign.

— Permission(H, sec_of ficer,revoke, U RA_physician_cardio_dpt, De f ault)

When a role is authorized to both assign and revoke users to a specific role,
we create the activity manage, and consider the activities assign and revoke as
two sub-activities of manage:

— Yorg, Vrole,Vview, Vcontext,
Permission(org, role, manage, view, context) —
Permission(org, role, assign, view, context) A
Permission(org, role, revoke, view, context)

that is if a given role is permitted to manage a given view in a given context,
this role is also permitted to perform assignment and revocation of this view in
the same context.

The prerequisite conditions: In the ARBAC model, the relation can_assign
makes it possible to add prerequisite conditions on the role of the user concerned
by the assignment. It is possible to express this kind of condition in the AdOr-
BAC model. Let us consider the following example:

— The director is permitted to designate a user as the head of department of
cardiology but only if this user is a member of the role physician:
P3 : Permission(H, director, assign, U RA_head_cardio_dpt, De f ault)
The view URA_head_cardio_dpt is defined as follows:
Yura,Use(H,ura, URA_head_cardio_dpt) <
Use(H,ura,URA_head_dpt)\
Empower(H, subject(ura), physician)

We can thus specify that for the department of cardiology the head must
be a physician. It is no use having any perquisite condition for the revocation
of this head, that is why this last permission is granted just for the activity

11

assign. This is specified in a similar way as permission P1 but the permission
only applies to activity assign.

The user-role assignment in AdOr-BAC is very flexible. A large number
of conditions can be expressed such as the prerequisite conditions of ARBAC,
thanks to the use of views which make it possible to model the assignments.

4.3 PRA in AdOr-BAC

In the previous section we dealt with the user-role administration. We discuss
here the permission-role administration. As we have just seen, we modelled user
assignment with the view URA. Here, the permission assignment is modelled
with a new view called PRA. Giving a new permission to a role corresponds to
create a new object which complies with the view PRA.

The view PRA: Five attributes are associated with the view PRA:

— issuer: the organization where the permission applies

— grantee, privilege, target: the role, activity and view concerned by the per-
mission

— context: designate the context in which the rule can be applied

There is a link between the objects belonging to the view PRA and the
relationship Permission. This link is modelled as follows :

— Yorg,Veontext, Use(org, pra, PRA) —
Permission(issuer(pra), grantee(pra), privilege(pra), target(pra), context(pra))

The activity manage: The same activities assign, revoke and manage
defined in the previous section are used to express the authorization given to a
role to assign and revoke permissions to other roles.

The prerequisite conditions: The prerequisite conditions defined in ARBAC
related to the permission-role assignment can be expressed in our model through
the view PRA as we saw in the URA section.

4.4 UPA in AdOr-BAC

The URA and PRA components respectively allow an authorized user to assign
users to roles and permissions to roles. Thus, these components indirectly enable
this authorized user to assign permissions to users. We argue that sometimes a
more direct process should enable a user to grant a permission to another user.
For instance, let us consider a situation where there are two users, John a physi-
cian and Jane his medical secretary. The role medical secretary is not permitted
to have an access to the view medical record. John makes a consultation on Jack,
a patient and, after this consultation, wants to update Jack’s medical record.
However, John is too busy to do so; he decides to grant Jane a permission to
update Jack’s medical record. Notice that permissions of the role medical secre-
tary do not change, Jane simply gets a new permission from John. This is the

12

objective of the UPA component to control the assignment of a new permission
to a user and revocation of an existing permission. For this purpose, we consider
the same activities assign, revoke and manage as the ones suggested in URA
and PRA. Actually, we can consider two different cases called UPA1 and UPA2.
UPA1 enables an authorized user to grant another user a permission to per-
form a specific action on a specific object. UPA2 is more general. It enables an
authorized user to grant another user a permission to perform a given activity
on a given view. Due to space limitation, we only present UPA1; UPA2 can be
similarly defined. We shall then analyze how UPA1 applies to model the concept
of delegation.

UPA1: granting permissions on specific objects and actions In this case,
we consider a view U P A1 with five attributes having the same names as PRA but
with sightly different meaning: issuer represents the organization who is issuing
the permission, grantee is the subject who is receiving the permission, privilege
represents the action the grantee is authorized to perform, target represents the
object the grantee is authorized to have an access to and context is the context
in which the permission applies. There is a rule that specifies that we can derive,
from objects belonging to the view UPAL, the fact that a subject is permitted
to perform an action on an object. This is modelled by the following rule:

— Yorg,Vupa,
use(org, upa, UPAL)A
Define(issuer(upa), grantee(upa), privilege(upa), target(upa), context(upa))
— Is_permitted(grantee(upa), privilege(upa), target(upa))
that is, if an object upa is used by a given organization org in view UPA1
and the issuer of upa defines that the context holds between the grantee, the
privilege and the target specified by upa, then the grantee is permitted to
use his privilege on the target.

The permissions derived from this rule may be viewed as exceptions to the
general permissions defined by the predicate Permission. This is exactly the
purpose of the UPA component to provide means to specify such exceptions.

Let us now show how this material is used to specify that, in a given hospital
H1, a physician is permitted to grant his or her medical secretary a permission to
update the medical record of one of his or her patient. We have first to consider
a sub-view SPUMR (for Secretary Permission of Update Medical Record) of
view UPA1 defined as follows:

— Yupa, Use(H1,upa, SPUMR) <
Use(H1,upa, UPA1)A
Empower(H1, grantee(upa), medical _secretary)A
Consider(H1, privilege(upa), update) A
Use(H1, target(upa), medical record)
that is object upa is used in view SPUMR if and only if it is used in view
U P A1 and the values of attributes grantee, privilege and target respectively

13

correspond to a user empowered as a medical secretary, an action considered
as an updating activity and an object used as a medical record.

The permission is then specified as follows:

— Permission(H1, physician, assign, SPUMR, PSP)

that is, in H1, the role physician has permission to assign a permission be-
longing to view SPUMR in context PSP (for Physician’s Secretary and Pa-
tient). The context PSP is defined as follows:
Vs, Va,Vupa, De fine(H1, s, a, upa, PSP) <

Empower(H1, s, physician) A Use(H1,upa, UPAL)A

grantee(upa) € secretary(s) A name(target(upa)) € patient(s)
that is, H1 defines that subject s performs action a on object upa in context
PSP if s is a physician in H1, upa is used in view UP A1, the grantee of upa
is a secretary of s and the target name of upa is a patient of s.

Using this permission, John (a physician of H1), is permitted to grant Jane
(his secretary) a permission to update Jack’s medical record (his patient).

Application to delegation Modelling delegation is a complex problem. The
analysis performed in [1] shows that there are several subtleties leading to many
possible definitions of the concept of delegation. The objective of this paper is not
to fully investigate this problem. We shall simply show that the expressiveness
of AdOr-BAC is sufficient to model several of these subtleties.

In AdOr-BAC, permission to delegate may be represented by facts having
the following forms:

— Permission(org, role, delegate, view, context)
meaning that, in organization org, role is permitted to delegate a permission
on view in a given context. view is a sub-view of UPA1 or U P A2 (depending
on the delegation is to perform a specific action on an object, or an activity
on a view).

It is generally assumed that to delegate a permission to a user, the grantor
must first hold the permission he wants to delegate. In AdOr-BAC, this is mod-
elled by a context AG (for Authorized Grantor) defined as follows:

— Yorg, Vs, Va, Vupa,
Define(org, s,a,upa, AG) <
Use(org, upa, UPAL)A
Is_permitted(s, privilege(upa), target(upa))
that is, in any organization org, subject s performs action a in context AG
if org uses upa in view UPA1® and s is permitted to perform the delegated
privileged action on the delegated target object.

8 The definition of context AG must be slightly changed if we consider view UPA2.

14

In some circumstances, we may also specify that the delegation only applies
temporarily and will be automatically revoked after a given deadline. In AdOr-
BAC, this may be modelled by a temporal context. Temporal and other types of
contexts are further investigated in [4]. Another possible restriction is that the
grantor will loose the permission he has delegated. In AdOr-BAC, this means
that delegation is not an elementary activity but the combination of assigning a
permission (as modelled in UPA1 or UPA2) and self-revoking this permission on
the grantor (this may be also modelled in UPA1 or UPA2). We do not further
develop this analysis of the delegation concept in this paper. We plan to continue
this investigation in the future.

5 Conclusion

In this paper, we have presented AdOr-BAC, an administration model for the
Or-BAC model. Using AdOr-BAC, the definition of an administration policy
is defined in a similar way as the remainder of the security policy specified in
Or-BAC. Thus, Or-BAC is a fully auto-administered model, we suggest a logical-
based model to express both Or-BAC and AdOr-BAC. In a forthcoming paper,
we plan to give an interpretation of this model using a syntax closed to SQL.

AdOr-BAC provides a good compromise between fully centralized (and too
rigid) administration as in the MAC model, or fully decentralized (but uncon-
trolled) administration as in the DAC model. When creating a new Or-BAC
policy, we suggest starting with a unique user (the creator of the policy), a
unique organization (whose name is defined by the creator) and a unique pre-
defined role policy-designer assigned to the creator. The role policy-designer has
minimal permissions to create new organizations, define roles to administer these
organizations and specify permissions associated with these roles. Thus, using
AdOr-BAC, one can specify a decentralized administration, but it is always
possible to control and limit the capabilities to administer associated with the
different created roles.

We develop three main components for AdOr-BAC called URA for User-Role
Administration, PRA for Permission-Role Administration and UPA for User-
Permission Administration. The UPA component is useful to control User to
User delegation, when a user wants to grant another user a specific permission.
We suggest two variations of the UPA component: UPA1 that enables a user
to delegate a permission to perform a specific action on a specific object and
UPA2 to delegate a permission to perform an activity on a view. Applying the
UPA component to model delegation still requires further work. As mentioned
in [1], there are several different characteristics related to delegation such as
permanence, monotonicity, totality, levels of delegation, cascading revocation.
We have started modelling some of these criteria in the context of the AdOr-BAC
model through context definitions. We plan to continue this work, in particular to
model how to refine non elementary activities (such as non monotonic delegation)
into elementary ones (such as permission assignment and self-revocation). We
have not here taken to account the role hierarchy, and the inheritance cascading

15

revocation issues which might appear then. Multi-step delegations also require
further investigation.

Finally, we do not discuss the enforcement of an Or-BAC security policy

administrated with AdOr-BAC. This problem will be studied in a forthcoming
paper.

Acknowledgement: For this work, Alexandre Miege is funded by France
Télécom R&D and Frédéric Cuppens is partially funded by the MP6 RNRT
project of the ministery of Research.

References

1.

10.

11.

12.

Ezedin Barka and Ravi Sandhu. Framework for Role-Based Delegation Models. In
Proceedings of the 16th Annual Computer Security Applications Conference (AC-
SAC’00), New Orleans, Louisiana, December 2000.

J. Crampton and G. Loizon. SARBAC: A New Model for Role-Based Adminis-
tration. Technical Report BBKCS-02-09, Birkbeck College, University of London,
July 2002.

F. Cuppens, P. Balbiani, S. Benferhat, Y. Deswarte, A. Abou El Kalam, R. El
Baida, A. Mige, C. Saurel, and G. Trouessin. Organization Based Access Control.
In Proceedings of IEEE jth International Workshop on Policies for Distributed
Systems and Networks (POLICY 2003), Lake Come, Italy, June 2003.

F. Cuppens and A. Mige. Modelling Contexts in the Or-BAC Model. In Proceedings
of 19th Applied Computer Security Associates Conference (ACSAC 2003), Las
Vegas, Nevada, December 2003.

N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification
Language. In Proceedings of IEEE 2th International Workshop on Policies for
Distributed Systems and Networks (POLICY 2001), Bristol, UK, January 2001.
David F. Ferraiolo and D. Richard Kuhn. Role-Based Access Controls. In Z. Ruth-
berg and W. Polk, editors, Proceedings of the 15th NISt-NSA National Computer
Security Conference, pages 554-563, Baltimore, MD, October 1992.

S. I. Gavrila and J. F. Barkley. Formal Specification for Role Based Access Control
User/Role and Role/Role Relationship Management. In Third ACM Workshop on
Role-Based Access Control, pages 81-90, October 1996.

L. Guiri. A new model for role-based access control. In Proceedings of the 11th
Annual Computer Security Applications Conference, pages 249-255, New Orleans,
LA, December 1995.

S. Oh and R. Sandhu. A Model for Role Administration Using Organization Struc-
ture. In Proceedings of the 7th ACM Symposium on Access Control Models and
Technologies (SACMAT 2002), pages 155-162, Monterey, California, June 2002.
R. Sandhu and V. Bhamidipati. The URA97 Model for Role-Based User-Role
Assignment. In Proceedings of IFIP WG 11.8 Workshop on Database Security.
North-Holland, Lake Tahoe, California, 1997.

R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 Model for Role-
Based Administration of Roles. ACM Transactions on Information and System
Security, 2(1), February 1999.

R. Sandhu and Q. Munawer. The RRA97 Model for Role-Based Administration
of Role Hierarchies. In Proceedings of the 14th Annual Computer Security Appli-
cations Conference (ACSAC’98). Phoenix, Arizona, December 1998.

16

13. R. Sandhu and Q. Munawer. The ARBAC99 Model For Administration of Roles. In
Proceedings of the 15th Annual Computer Security Applications Conference (AC-
SAC’99), Phoenix, Arizona, December 1999.

14. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-Based Access
Control Models. IEEE Computer, 29(2):38-47, February 1996.

