
Alert Correlation in a Cooperative Intrusion Detection Framework

Frédéric Cuppens Alexandre Miège
ONERA Centre de Toulouse

2, av. Edouard Belin
31005, Toulouse CEDEX, France

Abstract

This paper presents the work we have done within the
MIRADOR project to design CRIM, a cooperative module
for intrusion detection systems (IDS). This module
implements functions to manage, cluster, merge and
correlate alerts. The clustering and merging functions
recognize alerts that correspond to the same occurrence
of an attack and create a new alert that merge data
contained in these various alerts. Experiments show that
these functions significantly reduce the number of alerts.
However, we also observe that alerts we obtain are still
too elementary to be managed by a security
administrator. The purpose of the correlation function is
thus to generate global and synthetic alerts. This paper
focuses on the approach we suggest to design this
function.

Keywords: Cooperative Intrusion Detection, IDMEF,
Alert Merging, Alert Correlation.

1. Introduction

There are actually two main intrusion detection
approaches: the behavioral approach (also called anomaly
detection) and the signature analysis (also called misuse
detection). Anomaly detection is based on statistical
description of the normal behavior of users or
applications. The objective is then to detect any abnormal
action performed by these users or applications. The
second approach, called misuse detection, is based on
collecting attack signatures in order to store them in an
attack base. The IDS then parses audit files to find
patterns that match the description of an attack stored in
the attack base.

None of these approaches is fully satisfactory. They
generally generate many false positives (corresponding to
a false alert), false negatives (corresponding to a non-
detected attack) and the alerts are too elementary and not
enough accurate to be directly managed by a security
administrator.

For instance, anomaly detection can generate many
false positives. This is because deviation from normal
behavior does not always correspond to the occurrence of
an attack. Moreover, a malicious internal user can slowly

modify his behavior so that the final behavior includes an
attack. The IDS will learn this new behavior and will
associate it with a normal behavior. Therefore, the attack
will not be detected. This corresponds to the occurrence
of a false negative.

The problem of exhaustively defining the attack base
is a major difficulty of misuse detection. Therefore,
misuse detection can also generate many false negatives
especially when a given attack has many close but
different implementations. Moreover, in current products,
the quality of signatures expressed in the attack base is
generally not sufficient to avoid false positives.

In this context, a promising approach is to develop a
cooperation module between several IDS to analyze alerts
and generate more global and synthetic alerts. The
objective is to reduce the number of generated alerts and
increase the detection rate of attacks. We also want to
provide the security administrator with alerts that can be
used to take the right decision.

CRIM is such a cooperative module we have
developed within MIRADOR. MIRADOR is a project
initiated by the French Defense Agency (DGA) and is led
by Alcatel in collaboration with 3 research laboratories:
ONERA, ENST-Bretagne and Supelec. MIRADOR aims
to build a cooperative and adaptive IDS platform. CRIM
is part of this project and implements the following
functions: alert clustering, alert merging and alert
correlation. A cluster of alerts is a set of alerts that
correspond to the same occurrence of an attack. The
purpose of the merging function is then to create a new
alert that is representative of the information contained in
the various alerts belonging to this cluster.

This approach enables us to reduce the number of
alerts transmitted to the security administrator. We check
our merging function over an attack base of 87
“elementary” attacks. An elementary attack corresponds
to a non-decomposable step of a given scenario. For this
experiment, we used two different network-based IDS:
Snort [12] and e-Trust [1]. The results we obtained were
as follows. The 87 attacks generated 325 alerts: 264 for
Snort and 61 for e-Trust. Only 69 attacks were detected:
41 by both Snort and e-Trust, 27 by Snort but not by e-
Trust, 1 by e-Trust but not by Snort and 18 attacks were
not detected. When checking our clustering function on
the above attack base, we actually obtained 101 clusters

A lert
Clustering

A lert
M erging

A lert
Correlation

Intention
Recognition

Reaction

A lerts A lert Clusters

Candidate Plans

Global alerts

Global diagnosis

A lert base
management

function

IDS IDS IDS

Figure 1: CRIM architecture

(see [3] for further details on the generation of these
clusters).

But, the alerts we obtained still correspond to too
elementary alerts. The consequence will be that the
security administrator will have difficulty to take the
correct decision when receiving these alerts.

Therefore, a complementary analysis must be
performed. This is the purpose of the correlation function.
The principle of the correlation function is to consider
that the intruder wants to achieve a malicious objective
but he cannot generally get his way by only performing a
single attack. Instead, he usually performs several attacks
that correspond to steps of a more global intrusion plan
that enables him to achieve his malicious objective.
Notice that we include, in the intrusion plan, preliminary
steps the intruder generally performs to collect various
information on configuration of the system to be attacked.

Classical IDS only detect elementary attacks that
correspond to the steps of this intrusion plan. The
objective of the correlation function is thus to correlate
alerts in order to recognize the intrusion plan that is
currently executed by the intruder.

In this paper, we present the approach we suggest
implementing the correlation function. The remainder of
this paper is organized as follows. Section 1 summarizes
the main principles of our approach. We first introduce
the architecture of CRIM, the cooperative module we
developed for intrusion detection. We shortly presents the
objectives of the clustering, merging and correlation
functions. We then suggest our approach to modeling
alerts and attacks. Both models are based on first order
logic and are used in our correlation approach. Actually,
our representation of attacks is based on the LAMBDA
language [4]. Section 3 sketches our correlation approach,
comparing it with other approaches suggested in the
literature. Section 4 formalizes this approach and section
5 further refines it by introducing the concept of

abductive correlation. Finally, section 6 concludes this
paper.

2. General principles

2.1. CRIM Architecture

Figure 1 presents the main principles we suggest to
developing a cooperation module for intrusion detection.
There are five main functions in this module.

The alert base management function receives the alerts
generated by different IDS and stores them for further
analysis by the cooperation module. We shall assume that
all these alerts are compliant with the Intrusion Detection
Message Exchange Format (IDMEF) [2]. The purpose of
the IDMEF is to define common data formats and
exchange procedures for sharing information of interest to
intrusion detection and response systems and those that
may need to interact with them.

The approach we suggest to implement the alert base
management function is to convert the IDMEF messages
into a set of tuples and to store them into a relational
database (see section 2.2 below).

The clustering function can then have an access to this
database and generates clusters of alerts. When an attack
occurs, the IDS connected to CRIM may generate several
alerts for this attack. The clustering function attempts to
recognize the alerts that actually correspond to the same
occurrence of an attack. These alerts are brought into a
cluster. As presented in [3], a relation of similarity
connects alerts belonging to the same cluster. Each cluster
is then sent to the alert merging function. This function
was also presented in [3]. For each cluster, this function
creates a new alert that is representative of the
information contained in the various alerts belonging to
this cluster.

The purpose of this paper is to present next step in our

cooperation module, that is the correlation function. This
function further analyzes the cluster alerts provided as
outputs by the merging function. As mentioned in the
introduction, we observe that the merging function
generally provides too elementary alerts. The objective of
the correlation function is thus to correlate alerts in order
to provide the security administrator with more synthetic
information.

The result of the correlation function is a set of
candidate plans that correspond to the intrusion under
execution by the intruder. However, the final objective of
the intruder is perhaps not achieved yet. Next step in our
cooperation module is thus to develop the intention
recognition function. The purpose of this function is to
extrapolate these candidate plans in order to anticipate the
intruder actions. This function should provide a global
diagnosis of the past (what the intruder has performed up
to now), the present (what the intruder has obtained and
what is the current security state of the system targeted by
the intruder) and the future (how the intruder will go on).
The result of this function is to be used by the reaction
function to help the system administrator to choose the
best counter measure to be launched to prevent the
malicious actions performed by the intruder.

As mentioned in the introduction, we shall only
present in this paper our approach to correlating alerts.
The intention recognition function is not presented. It is
under development and the approach we suggest for this
function is briefly sketched in the conclusion of this
paper.

2.2. Alert modeling

In our approach, every alert is modeled using the
IDMEF format. A Document Type Definition (DTD) has
been proposed to describe IDMEF data format through
XML documents. This is the representation we shall
consider in the remainder of this paper.

However, the correlation function does not directly
deal with this XML representation of alerts. It is actually
automatically converted into a set of logical facts. This set
of facts is then stored in a database.

For instance, let us consider the following portion of
an alert in the IDMEF format:

<?xml version="1.0"?>
<!DOCTYPE IDMEF-Message PUBLIC "-//IETF//DTD
RFCxxxx IDMEF v0.3//EN" "/usr/sbin/idmef-
message.dtd">
<IDMEF-Message version="0.3">
 <Alert ident="249">

 <Analyzer analyzerid="snort-0000-zp109">
 <Node category="dns">

 <location>unknown</location>
 <name>zp109</name>
 </Node>

 <Process>
 <name>snort</name>
 </Process>
 </Analyzer>
….
</Alert>
</IDMEF-Message>

It is translated into the following logical representation
(where “ ,” represents conjunction):

alert(1),
ident(1,”249”),

analyzer(1,2),
analyzerid(2, “snort-0000-zp109"),
analyzer_node(2,3),

node_category(3,”dns”),
node_location(3,”unknown”),
node_name(3,”zp109”),
analyzer_process(2,4),
process_name(4,”snort”),
….

In this representation, ident, analyzer, analyzerid, etc.
are binary predicates we use to represent the alert.
Predicates are also introduced to describe other portions
of an alert description such as detect time, create time,
source, target, classification, etc. Actually, we have
defined 34 predicates to completely represent all the
possible fields of an alert as suggested in the IDMEF
format. Numbers 1, 2, 3, 4, … that appears in the above
description correspond to object identifiers that are
internally created to represent all the sub-parts of an alert
description.

2.3. Attack specification in LAMBDA

Since our approach to alert correlation is based on
attacks specified in the LAMBDA language, we shortly
recall the main principles of this language (see also [4] for
a more detailed presentation).

In this language, an attack is specified using five
fields:

• Attack Pre-condition: A logical condition that
specifies the conditions to be satisfied for the attack to
succeed.

• Attack Post-condition: A logical condition that
specifies the effect of the attack when this attack
succeeds.

• Attack scenario: The combination of events the
intruder performs when executing the attack.

• Detection scenario: The combination of events that are
necessary to detect an occurrence of the attack.

• Verification scenario: A combination of events to be
launched to check if the attack succeeds.

Notice that other fields might be included in the attack
description. For instance, the ADELE language [11]
suggests introducing a “reaction” field to specify the
actions to be launched when the attack is detected.
Actually, in the remainder of this paper, we shall only
consider the “Pre-condition” , “Post-condition” and
“Detection scenario” fields.

The pre-condition and post-condition of an attack
correspond to description of conditions over the system’s
state. For this purpose, we use a language, denoted L1,
which is based on the logic of predicates. Predicates are
used to describe properties of the state relevant to the
description of an attack. The set of predicates used to
represent these state conditions is partly inspired from the
taxonomy suggested by the Darpa to classify attacks (see
[8] for a complete presentation of this taxonomy). More
specifically, we shall use:
• A predicate to specify the access level of the intruder

over the target system: access_level. For example, the
fact access_level(bad_guy,192.168.12.3,local)
specifies that the user whose name is “bad_guy” has a
local access to host 192.168.12.3. Possible values of
the access level are remote, local, user, root and
physical.

• A set of predicates to specify the effects of attacks on
the target system. This set includes predicates
deny_of_service, alter and (illegal) use. For instance,
the fact deny_of_service(192.168.12.3) specifies that
the attack causes a deny of service on host
192.168.12.3.

• Predicates to specify conditions on the state of the
source or target systems. For instance
use_service(192.168.12.3,showmount) specifies that
service showmount is active on host 192.168.12.3.

These predicates are combined using the logical
connectives “ ,” (conjunction denoted by a comma) and
“not” (negation). Currently, we do not allow using
disjunction in the pre and post descriptions of an attack.
Another restriction is that negation only applies to
predicates, not to conjunctive expressions.1

Figure 2 provides 4 examples of attacks specified in
LAMBDA: NFS mount, Modification of .rhost file,
TCPScan and Winnuke. In this description, terms starting
with an upper case letter correspond to variables and other
terms correspond to constants. For instance, pre-condition
of NFS mount attack says:
• access_level(Source_user,Target_address,remote),mou

nted_partition(Target_address,Partition)

that is, to perform NFS mount attack, the intruder
Source_user must have a remote access on the target

1 The reason of these restrictions will be explained in section 4.2.

whose IP address is Target_address and Partition must be
a mounted partition.

The post condition of this attack says:
• can_access(Source_user,Partition)

That is the intruder Source_user gets an access on the
mounted partition Partition.

Notice that sometimes the effect of an attack is simply
a knowledge gain for the attacker about the target system.
This is for instance the case of attack TCPScan in figure
2. Describing this kind of attacks is very important since
their occurrence often corresponds to preliminary steps of
a more global attack scenario. In order to represent a
knowledge gain, we extend language L1 so that it also
includes a meta-predicate (actually a logical modality)
knows. For instance, if bad_guy is the attacker, then
knows(bad_guy, use_service(192.168.12.3,’NetBios’))
means that bad_guy knows that NetBios is an active
service of system whose IP address is 192.168.12.3.

The other fields of an attack description in LAMBDA
correspond to attack scenario, detection scenario and
verification scenario2. These scenarios are specified using
event calculus algebra. This algebra enables us to
combine several events using operators such as: ;
(sequential composition), | (parallel unconstrained
execution), ? (non deterministic choice), & (synchronized
execution) and if_not (exclusion of an event when another
event occurs). However, all the examples of attacks we
shall use in this paper (including examples presented in
figure 2) actually correspond to elementary scenarios
based on a single event. This is represented by:
• <scenario>Action</scenario>

to specify that Action is the single event corresponding
to the attack scenario.

• <detection>Alert</detection>

to specify that Alert is the single event corresponding
to the detection of the attack.
Finally, conditions appearing in fields cond_scenario

and cond_detection are used to formulate description of
the event specified in the scenario and detection fields.
The cond_scenario field is generally specified using the
script predicate to represent the command the intruder
runs to perform the attack. The cond_detection field is
used to describe the main attributes of the alert we expect
when the attack occurs. This corresponds to a logical
expression without restriction (that is, it can include
conjunction, disjunction or negation). It is built using the
predicates we introduced in section 2.2 to logically model
an alert. For instance, expression:
• alert(Alert), classification(Alert,"MIR-0163"),

source(Alert,Source),
source_user(Source,Source_user)

2 Actually, description of the verification_scenario field is not

provided in the examples of figure 2.

<?xml version="1.0" encoding="UTF-8"?>
<attack attackid="MIR-0036">
<name>winnuke sur la cible</name>
<pre>use_os(Target_address,windows),

state(Target_address,available),
dns_server(Target_address)

</pre>
<post>deny_of_service(Target_address)
</post>
<scenario>Action</scenario>
<cond_scenario>
 script(Action,’winnuke $Target_address’)
</cond_scenario>
<detection>Alert</detection>
<cond_detection>alert(Alert),

source(Alert,Source),
source_node(Source,Source_node),
address(Source_node,Source_address),
target(Alert,Target),

target_node(Target,Target_node),
address(Target_node,Target_address),
classification(Alert,"MIR-0036")

</cond_detection>
</attack>

<?xml version="1.0" encoding="UTF-8"?>

<attack attackid="MIR-0163">

<name>mount partition</name>

<pre>access_level(Source_user,Target_address,remote),

 mounted_partition(Target_address,Partition),

</pre>

<post>can_access(Source_user,Partition)

</post>

<scenario>Action</scenario>

<cond_scenario>

 script(Action,’mount -t nfs $Partition:$Target_address $Partition’)

</cond_scenario>

<detection>Alert</detection>

<cond_detection>alert(Alert),

source(Alert,Source),

source_user(Source,Source_user),

target(Alert,Target),

target_node(Target,Target_node),

address(Node,Target_address),

classification(Alert,"MIR-0163")

</cond_detection>

</attack>

Lambda attack MIR-0163 – NFSMount

<?xml version="1.0" encoding="UTF-8"?>

<attack attackid="MIR-0164">

<name>modification du .rhost</name>

<pre>access_level(Source_user,Target_address,remote),

 can_access(Source_user,Partition),

 owner(Partition,Target_User),

 userid(Target_user,Target_address,Userid),

</pre>

<post> access_level(Source_user,Target_address,user)

</post>

<scenario>Action</scenario>

<cond_scenario>script(Action,’cat "++" > .rhost’)</cond_scenario>

<detection>Alert</detection>

<cond_detection>alert(Alert),

source(Alert,Source),

source_user(Source,Source_user),

target(Alert,Target),

target_node(Target,Target_node),

address(Target_node,Target_address),

classification(Alert,"MIR-0164")

</cond_detection>

</attack>

Lambda attack MIR-0163 – Modification of .rhost

Lambda attack MIR-0074 – TCPScanLambda attack MIR-0036 – Winnuke

Figure 2 : Attack specification in Lambda

<?xml version="1.0" encoding="UTF-8"?>

<attack attackid="MIR-0074">

<name>tcpscan sur la cible</name>

<pre>use_soft(Source_address,tcpscan),

 use_service(Target_address,Target_service),

 service_type(Target_service,tcp)

</pre>

<post>

 knows(Source_user,use_service(Target_address,Target_service))

</post>

<scenario>Action</scenario>

<cond_scenario>script(Action,’tcpscan $Target_address’)

</cond_scenario>

<detection>Alert</detection>

<cond_detection>alert(Alert),

source(Alert,Source),

source_node(Source,Source_node),

address(Source_node,Source_address),

source_user(Source,Source_user),

target(Alert,Target),

target_node(Target,Target_node),

target_service(Target,Target_service),

classification(Alert,"MIR-0074")

</cond_detection>

</attack>

specifies that Alert is analert whose classification is
"MIR-0163" and source must match a given variable
Source. The user associated with this source is another
variable Source_user. This description enables us to
formulate constraints between the various fields of an
alert and the variables used in the pre_condition and
post_condition description of an attack.

Notice that, in the following, the alert classification
will have always the form “MIR-xxxx” . This corresponds
to an internal classification of attacks used within the
MIRADOR project. This classification is used by the
merging function to translate “vendor specific”
classification into a common classification so that it is
thus possible to make correspondence between alert
classifications generated by two different IDS (see [3] for
more details).

3. Explicit correlation

We identified two main approaches to achieve
correlation3:
• Explicit correlation of events is used when the security

administrator is able to express some connection
between events that he knows. This connection may be
a logical link based on knowledge of relations between
alerts. It may be also a link depending on the topology
of information system's components [7,6].

• Implicit correlation of events is used when data
analysis brings out some mappings (may be statistical
ones) and relations between events. This approach is
mainly based on observing groups of alerts and
extracting implicit relations between them. Many
works show that intrusion detection probes produce
groups of alerts according to the configuration data,
the traffic and the topology of information system
under surveillance. Such approaches are based on
learning techniques (classification [9], data mining
[15], neural network [10], …) and should significantly
reduce the amount of alerts we have to deal with.

We opt for the explicit approach to carry out the
correlation function. Thus, it must be possible to express
explicitly known logical links between attacks. This is
achieved by using the following predicate:
• attack_correlation(Attack1,Attack2): this predicate

says that Attack1 may be correlated with Attack2, that
is Attack1 enables the intruder to then perform
Attack2.

3 Notice that several authors use the terms “alert correlation” for

functions that actually correspond to “alert merging” in our terminology
(see [13] for instance). We do not consider such approaches in the
remainder of this paper.

For instance, the fact attack_correlation(“MIR-
0066” ,”MIR-0162”) specifies that it is possible to
correlate attack “MIR-0066” (which corresponds to
“rpcinfo”) with attack “MIR-0162” (which corresponds to
“showmount”). This is because the attack “rpcinfo”
enables the intruder to learn if rpc service “showmount” is
active.

However, our objective is not to correlate attacks but
to correlate alerts. Predicate “attack_correlation” is too
coarse for this purpose because it does not provide
conditions the alerts must satisfy to correlate them. For
instance, we can only consider that alerts corresponding
to attacks “MIR-0066” and “MIR-0162” are steps of the
same scenario if the target systems appearing in these
alerts are equal. If this condition is not satisfied, there is
no reason to correlate these alerts.

Therefore, we also introduce the following predicate:
• alert_correlation(Alert1,Alert2): this predicate says

that Alert1 is correlated with Alert2.

This predicate is used to specify correlation rules. The
conclusion of a correlation rule has always the form
alert_correlation(Alert1,Alert2). Its premise specifies the
conditions Alert1 and Alert2 must satisfy to conclude that
Alert1 and Alert2 can be correlated as part of a given
attack scenario.

For instance, figure 3 presents the rule to correlate two
alerts whose classifications are respectively “MIR-0066”
and “MIR-0162” . The premise of a correlation rule has
always three parts. Part 1 and 2 respectively provide a
description of the two alerts to be correlated. These
descriptions correspond to logical conditions expressed in
the language presented in section 2.2 to model alerts. Part
3 of the premise expresses the conditions to be satisfied to
correlate the two alerts. In the above example, there are
two such conditions:
• Condition 1 says that the target addresses appearing in

the alerts must be equal (meaning that attacks rpcinfo
and showmount applies to the same target)

• Condition 2 says that the service name appearing in
Alert1 must be equal to service “mountd” (meaning
that one of the services provided by rpcinfo is equal to
“mountd”)

Notice that there is always an implicit condition to
correlate two alerts Alert1 and Alert2. This condition says
that Alert1 must occur before Alert2. It is checked by
comparing the detect time of Alert1 with the detect time
of Alert2. However, this condition is not directly
expressed in the correlation rules because it would simply
burden specification. Instead, it is systematically checked
when the correlation rules are evaluated (see section 4.5
for more details on application of correlation rules).

As the reader may notice, specifying correlation rules
would be a quite complex task to perform manually:
• It would be tedious for the administrator at least from a

syntactical point of view.

• It is not obvious to be exhaustive, that is not to forget
correlation rules specifying pairs of alerts that may be
correlated.

• It is also not always obvious to specify the right
correlation conditions.

This is the reason why it would be very interesting to
have a method to automatically generate correlation rules.
We have developed such a method, called semi-explicit
correlation. It is presented in the following section.

4. Semi-explicit correlation in LAMBDA

4.1. Background of the approach

This section presents the approach we suggest to
performing alert correlation. This approach is based on
the analysis of attack description specified in LAMBDA.
The central idea of the approach is to recognize whether
executing a given attack can contribute to execute another
attack.

This idea is modeled by specifying possible logical
links between the post-condition of an attack A and the
pre-condition of an attack B. If such a link exists, then it
is possible to correlate an occurrence of attack A with an

occurrence of attack B because we can assume that the
intruder has performed A as a step that enables him to
perform B.

To formally define this kind of correlation between the
post-condition of an attack and the pre-condition of
another attack, let post(A) be the logical formula
representing the post-condition of attack A and pre(B) be
the logical formula representing the pre-condition of
attack B. Of course, we can correlate attack A and attack
B if post(A) logically implies pre(B), that is:

post(A)
�

 pre(B)
However, this definition is generally too strong. This is

because it is sufficient to correlate attack A with attack B
that attack A “contributes” to the realization of attack B.
This is formally specified as follows:

post(A) ∧ hyp � pre(B)
where hyp is an hypothesis that, when combined with
post(A), implies pre(B). Of course, the hypothesis hyp
alone must not be sufficient to imply pre(B), that is we
must not have hyp � pre(B). Another requirement is that
hyp must be consistent with post(A) because if this is not
the case then one can derive anything from post(A) ∧ hyp,
in particular pre(B).

The work we have done is based on this general
definition of correlation. However, this first definition is
not very manageable. Next sections present more
practical definitions of correlation. The implementation of
the correlation function in CRIM is actually based on
these definitions.

alert_correlation(Alert1,Alert2) :-

 alert(Alert1),
 target(Alert1,Target1),
 target_node(Target1,Target_node1),
 address(Target_node1,Target_address1),
 target_service(Target1,Target_service1),
 service_name(Target_service1,Service_name1),

 classification(Alert1,"M IR-0066"),

 alert(Alert2),
 target(Alert2,Target2),
 target_node(Target2,Target_node2),
 address(Target_node2,Target_address2),
 classification(Alert2,"M IR-0162"),

 Target_address1 = Target_address2,
 Service_name1 = "mountd".

Rule conclusion

Premise part 1:
Description of A lert1

Premise part 2:
Description of A lert2

Premise part 3:
Correlation conditions

Figure 3: Example of correlation rule between alerts corresponding to attacks

“MIR-0066” (rpcinfo) and “MIR-162” (showmount)

4.2. Definition of alert correlation

Let A and B be two attacks and let Post(A) and Pre(B)
respectively be the post condition of attack A and pre
condition of attack B. Let us assume that Post(A) and
Pre(B) respectively have the following form:4

• Post(A) = exprA1 , exprA2 , … , exprAm

• Pre(B) = exprB1 , exprB2 , … , exprBn

where each expri must have one of the following
forms:
• expri = pred

• expri = not(pred)

• expri = knows(User,pred)

• expri = knows(User, not(pred))

where pred is a predicate.

Definition 1: Direct correlation (simple case)
We say that attack A and attack B are directly

correlated if the following condition is satisfied:
• there exists i in [1,m] and j in [1,n] such that exprAi

and exprBj are unifiable through a most general unifier
(mgu) θ.

For instance, attacks “MIR-0163” (NFS Mount) and
“MIR-0164” (Modification of .rhost) are directly
correlated. This is because post(“MIR-0163”) is equal to
can_access(Source_user,Partition) and this predicate also
appears in pre(“MIR-0164”). After renaming the variables
of can_access(Source_user,Partition) that respectively
appear in post(“MIR-0163”) and pre(“MIR-0164”) into
can_access(Source_user1,Partition1) and
can_access(Source_user2,Partition2), we can conclude
that these expressions are unifiable through mgu θ such
that Source_user1 = Source_user2 and Partition1 =
Partition2.

On the other hand, the converse is not true, that is
attack “MIR-0164” is not directly correlated with attack
“MIR-0163” . This is because post(“MIR-0164”) is equal
to access_level(Source_user,Target_address,user).
Predicate
access_level(Source_user,Target_address,remote) appears
in pre(“MIR-0163”) but since constants user and remote

4 Notice that we assume that the pre and post conditions do not

include disjunction. This is a restriction that is used to simplify
definition of correlation below. From a practical point of view, including
disjunction in the pre condition does not really increase the expressive
power of our attack description language since disjunctions in the pre
condition might be split into several sub-rules corresponding to each part
of the disjunction. On the other hand, disjunction in the post condition is
useful since it would enable us to specify some non-determinism in the
effect of an attack. So, generalyzing correlation definitions below to take
into account such disjunctions represents further work that remains to be
done.

are not unifiable, correlation of “MIR-0164” with “MIR-
0163” fails.

Let us now try to correlate attack “MIR-0162”
(Showmount) with attack “MIR-0163” (Mount partition).
A possible post condition of “MIR-0162” is
knows(Source_user,mounted_partition(Target_address,
Partition)), that is the intruder Source_user knows what
partitions are mounted on the target whose IP address is
Target_address. On the other hand,
mounted_partition(Target_address,Partition) appears in
pre(“MIR-0163”). However, due to knows modality, this
last expression is not directly unifiable with post(“MIR-
0162”). This is intuitively not satisfactory since executing
Showmount enables the intruder to then mount a partition
observed in Showmount.5

Therefore, we slightly modify definition 1 so that
attack “MIR-0162” can be correlated with “MIR-0163” .
This leads to the following definition:

Definition 2: Direct correlation (general case)
We say that attack A and attack B are directly

correlated if one of the following conditions is satisfied:
• there exists i in [1,m] and j in [1,n] such that exprAi and

exprBj are unifiable through a mgu θ.

or
• there exists i in [1,m] and j in [1,n] such that exprAi and

knows(User,exprBj) are unifiable through a mgu θ.

4.3. Indirect correlation

Let us now consider attacks “MIR-0073” (TCPScan)
and “MIR-0036” (Winnuke”). These two attacks are not
correlated using definition 2. However, attack Winnuke to
succeed requires that the operating system used on the
target system is Windows. The intruder can obtain this
knowledge about the target system by performing
TCPScan and by observing that port 139 is open
(meaning that a NetBios session is open which is
characteristic of Windows system).

Therefore, it would be suitable to correlate attacks
“TCPScan” and “Winnuke” in the case where port 139 is
scanned (and open). For this purpose, the solution we
suggest is to specify ontological rules to represent
possible relations between predicates. These ontological
rules are also represented using a pre and post condition.

Figure 4 shows an example of such a rule. This
ontological rule says that if a system whose IP address is
System_address uses service NetBios, then the operating
system used on this system is Windows.

5 To justify this point we actually assume that modality knows

satisfies the following axion for each User and Expr: knows(User,Expr)
→ Expr, that is if User knows that Expr then Expr is true.

From a syntactical point of view, we assume that
restrictions that apply to the representation of pre and post
conditions in an ontological rule are similar to the one for
pre and post conditions of an attack (that is, they do not
include disjunction).

Next step is then to generalize definition 2 when
ontological rule are used to perform correlation. This
generalization is done in two steps. We first generalize
definition 2 so that it applies to correlate two ontological
rules or an attack with an ontological rule or an
ontological rule with an attack. Since we assume that the
syntactical format of the pre and post conditions of an
attack is similar to the one of an ontological rule, this
generalization is straightforward.

We then introduce the notion of indirect correlation. It
is defined as follows:

Definition 3: Indirect correlation
We say that attack A and attack B are indirectly

correlated through ontological rules R1, …, Rn if the
following conditions are satisfied:
• Attack A is directly correlated with rule R1 through a

most general unifier θ0,

• For each j in [1,n-1], rule Rj is directly correlated with
rule Rj+1 through a most general unifier θj,

• Rule Rn is directly correlated with attack B through a
most general unifier θn.

Using definition 3, we can now conclude that attack
“MIR-0073” (TCPScan) is indirectly correlated with
attack “MIR-0036” (Winnuke). This is because the post-
condition of attack “MIR-0073” is equal to
knows(Source_user,use_service(Target_address,Target_s
ervice)). Then, since the pre-condition of “RULE-0001”
is equal to use_service(System_address,’NetBios’),
“MIR-0073” is directly correlated to “RULE-0001”
through the mgu:
• Target_address = System_address, Target_service =

‘NetBios’

Similarly, the post-condition of “RULE-0001” is equal
to use_os(System_address,windows). Since this predicate

also appears in the precondition of “MIR-0036” , “RULE-
0001” is correlated with “MIR-0036” when
System_address = Target_address. Thus, we can conclude
that attack “MIR-0073” is indirectly correlated with
“MIR-0036” .

4.4. Generating correlation rules

In this section, we show how to automatically generate
correlation rules similar to the one presented in section 3.
The process we suggest is the following.

Let us consider two attacks Attack1 and Attack2
whose descriptions are correlated according to definition
2 through a mgu θ. After renaming the variables that
appear in the descriptions of Attack1 and Attack2 so that
there is no common variable in these descriptions, we
shall generate a correlation rule having the following
form:

 correlation_rule(Alert1,Alert2) :-
cond_detection(Attack1),
cond_detection(Attack2),
θ.

where Alert1 and Alert2 are respectively the
(renamed) variables that appear in the detection field of
Attack1 and Attack26. For example, figure 5.a presents
the correlation rule corresponding to attacks “MIR-0163”
(NFS Mount) and “MIR-0164” (Modification of .rhost).

This rule is correct but it is not fully optimized7. In
particular, target descriptions of the two alerts might be
removed since they are not related to the correlation
condition. Notice also that our process also generates
condition Partition1 = Partition2. This is correct since, in
this attack scenario, the intruder must modify the .rhost
file of a partition previously mounted with attack NFS
Mount. But, as Partition1 and Partition2 remains free
variables, this condition will be always evaluated to true.
This is because we assume that information about the
mounted partition is not provided by alerts corresponding
to NFS Mount and Modification of .rhost.

The case where two attacks Attack1 and Attack2 are
indirectly correlated using ontological rules is slightly
more complicated. If Attack1 and Attack2 are indirectly
correlated using ontological rules R1, …, Rn through a set
of mgu θ0, …, θn, then we shall generate a correlation rule
having the following form:

6 Notice that our approach does not apply to the case where the

detection field of attacks corresponds to combined events. It is restricted
to detection scenarios that are single events.

7 Defining an algorithm to optimize correlation rules might be done.
But, the overhead due to this lack of optimization is marginal so that we
do not find that such an optimization is a priority.

<?xml version=”1.0” encoding=”UTF-8”>
<rule ruleid=”RULE-0001”>
 <pre>

use_service(System_address,’NetBios’)
 </pre>
 <post>

use_os(System_address,windows)
 </post>
</rule>

Figure 4: Example of ontological rule

 correlation_rule(Alert1,Alert2) :-
 cond_detection(Attack1),

cond_detection(Attack2),
 θ0, …, θn.
For example, figure 5.b presents the correlation rule

corresponding to attacks “MIR-0073” (TCPScan) and
“MIR-0036” (Winnuke).

Notice that all the correlation rules are automatically
generated by analyzing the descriptions in LAMBDA of
the set of attacks. This process is performed offline and
therefore, it is not time consuming for online intrusion
detection.

4.5. Applying correlation rules

After all the correlation rules are generated offline, the
online correlation process can start. When this process
receives a new alert Alert1, it proceeds as follows.

Let Attack1 be the classification associated with
Alert1. In a first step, we check if there are other alerts
already stored in the database and whose classification is
Attack2 such that the fact attack_correlation(Attack1,Attack2)
or attack_correlation(Attack2,Attack1) is stored in the
correlation base. Notice that this first step is only for
optimization since the correlation rules might be applied
directly. However it is more efficient to first filter on
predicate attack_correlation to check if there are alerts
that are potentially correlated to Alert1. Notice that we
both look for facts attack_correlation(Attack1,Attack2)

and attack_correlation(Attack2,Attack1) because we do
not assume that the alerts are received in the same order
as their order of occurrence.

If there are alerts Alert2 that are potentially correlated
with Alert1, then the corresponding correlation rules
apply to check if the correlation conditions are satisfied.
The result is a set of pairs of alerts that are correlated, one
member of these pairs being Alert1.

For each pair in this set, we then apply an algorithm to
check if this pair might be aggregated to an existing
scenario. Else, a new scenario starting with this pair of
alerts is generated. For instance, let us assume that there
is already a scenario with three alerts (alert1, alert2,
alert3). Let us assume that alert4 is received and that the
online correlation process generates a pair (alert3, alert4).
In this case, a “ longer” scenario (alert1, alert2, alert3,
alert4) is generated.

Notice that a complex scenario with several branches
is actually decomposed into several sequential scenarios
corresponding to each branch. For instance, let us
consider the scenario presented in figure 6. It is
represented by two sequential scenarios (alert1, alert2,
alert3, alert4) and (alert2,alert5,alert6,alert4). It will be
the role of the graphic interface to “aggregate” these two
sequential scenarios as presented in figure 6 (see annex 1
for a short presentation of this interface).

For each sequential scenario, the online correlation
process generates a special alert called “scenario alert” .
This alert is fully compliant with the IDMEF format.

alert_correlation(Alert1,Alert2) :-

 alert(Alert1),
 source(Alert1,Source1),
 source_user(Source1,Source_user1),
 target(Alert1,Target1),
 target_node(Target1,Target_node1),
 address(Target_node1,Target_address1),
 classification(Alert1,"MIR-0163"),

 alert(Alert2),
 source(Alert2,Source2),
 source_user(Source2,Source_user2),
 target(Alert2,Target2),
 target_node(Target2,Target_node2),
 address(Target_node2,Target_address2),
 target_user(Target2,Target_user2),
 classification(Alert2,"MIR-0164"),

 Source_user1 = Source_user2,
 Partition1 = Partition2.

Figure 5.a: Correlation rule for “MIR-0163”

NFSMount) and “MIR-0164” (Modification of .rhost)

alert_correlation(Alert1,Alert2) :-

 alert(Alert1),
 source(Alert1,Source1),
 source_node(Source1,Source_node1),
 address(Source_node1,Source_address1),
 source_user(Source1,Source_user1),
 target(Alert1,Target1),
 target_node(Target1,Target_node1),
 address(Target_node1,Target_address1),
 target_service(Target1,Target_service1),
 classification(Alert1,"MIR-0073”),

 alert(Alert2),
 source(Alert2,Source2),
 source_node(Source2,Source_node2),
 address(Source_node2,Source_address2),
 target(Alert2,Target2),
 target_node(Target2,Target_node2),
 address(Target_node2,Target_address2),
 classification(Alert2,"MIR-0036"),

 Target_address1 = System_address3,
 Target_service1 = ‘NetBios’ ,

 System_address3 = Target_address2.

Figure 5.b: Correlation rule for

“MIR-0073” (TCPScan) and “MIR-0036” (Winnuke)

Figure 6: Example of attack scenario

The “Correlationalert” field of this alert corresponds to
the list of correlated alerts (the order in this list is
important!). The other fields of this alert are generated by
using the merging function to merge data contained in the
correlated alerts (see [3] for more details about the
merging function).

5. Abductive correlation

There are still some problems that arise when we apply
our online correlation process. For instance, let us
consider the attack scenario presented in figure 7. We call
this attack “ illegal nfs mount” . This attack scenario
enables the intruder to get a root access by exploiting a
misconfiguration in the security policy, namely the
intruder can mount a partition corresponding to the home
directory of root. There are 6 different steps in this attack.

Intrusion scenario Detection results Fusion
results

Step 1 : attack_finger
finger root

Snort : 3 alerts
eTrust : 0 alert

CRIM : 1 alert

Step 2 : attack_rpcinfo
rpcinfo <target>

Snort : 1 alert
eTrust : 1 alert

CRIM : 1 alert

Step 3 : attack_showmount
showmount <target>

Snort : 1 alert
eTrust : 0 alert

CRIM : 1 alert

Step 4 : attack_mount
mount directory

Snort : 1 alert
eTrust : 0 alert

CRIM : 1 alert

Step 5 : attack_rhost
cat “++” > .rhost

Not detected

Step 6 : attack_rlogin
rlogin <target>

Snort : 1 alert
eTrust : 1 alert

CRIM : 1 alert

Figure 7: “Illegal NFS Mount” scenario

These 6 steps are specified in Lambda so that when we
apply the offline correlation process, we obtain 6
correlation rules as shown in Figure 8. cond1, … cond6
correspond to the 6 correlation conditions associated with
these correlation rules.

The result provided by the offline correlation process
should enable the online correlation process to fully
recognize the “ illegal NFS mount” scenario. However,
when this attack is launched on a system supervised by
Snort and e-Trust, 9 alerts are generated: 7 by Snort and 2

by e-Trust. Our clustering function gives 5 clusters.
Actually, both Snort and e-Trust did not detect step 5.

This result is then provided to the correlation function
for further analysis, the objective being to correlate these
5 clusters in order to recognize one single complex attack.
The main difficulty to fully recognize multiple steps
attack “ illegal NFS mount” comes from the fact that step
5 (“MIR-0164” : attack_rhost) is not detected by both
Snort and e-Trust. Our approach to solve this problem is
the following.

The correlation function receives one alert
corresponding to attack “MIR-0163” (attack_mount) and
another one corresponding to “MIR-0165”
(attack_rlogin). Since the correlation function knows that
it is possible to correlate attack_mount with attack_rhost
and then attack_rhost with attack_rlogin, the correlation
function makes the hypothesis that it is possible to
transitively correlate attack_mount with attack_rlogin8. In
this case, the approach is to abduce9 a new alert that is to
create a new (virtual) alert corresponding to attack_rhost.

When this virtual alert is generated, its classification
field is initialized to “MIR-0164” (corresponding to
attack_rhost). All the other fields are initialized by using
Skolem constants10. For instance, the target field is
initialized to “ target(1)” meaning that the target of this
alert exists but is currently unknown. The case of detect
time field is slightly more complex. It is partly unknown
but must satisfy the following constraint: it must be after
the alert corresponding to attack_mount and before the
alert corresponding to attack_rlogin. The solution in this

8 Similar reasoning applies to transitively correlate attack_finger

with attack_rlogin.

9 Abduction consists is making new hypotheses and to use them to
derive new facts. Typically, this kind of reasoning is used when facts are
missing to complete a diagnostic.

10 Skolemization is a process used to replace expressions having the
form ∃ x, p(x) by p(α) where α is a Skolem constant.

attack-rpcinfo

attack-showmount

attack-mount

attack-finger

attack-rhost

attack-rlogin

cond2

cond5

cond1

cond3

cond4

cond6

alert5

alert1 alert2 alert3 alert4

alert6

Figure 8: results of correlation process on attack
“illegal NFS mount”

case is to manage interval of time. Due to space
limitation, this point is not developed here but we plan to
present it in a forthcoming paper.

Once the virtual alert is abduced, the online correlation
process applies the corresponding correlation rules. It first
checks if cond4 is satisfied. In particular, we have to
satisfy the following condition: Target_address1 =
Target_address2 where Target_address1 is the IP address
of alert corresponding to attack_mount and
Target_address2 is the IP address of the virtual alert.
Since Target_address2 is actually a Skolem constant, this
unification succeeds and Target_address2 is updated so
that it is now equal to Target_address1. Then, we have to
check if cond6 is satisfied. cond6 includes a condition
having the form Target_address2 = Target_address3
where Target_address2 is the IP address of the virtual
alert and Target_address3 is the IP address of alert
corresponding to attack_rlogin. But Target_address2 is
now equal to Target_address1, so that checking cond6
will only succeed if Target_address1 is actually equal to
Target_address3, that is the alerts corresponding to
attack_mount and attack_rlogin have a target with the
same IP address. Else cond6 is not satisfied and therefore
the abductive correlation does not succeed.

We shall proceed similarly for cond5 to check whether
it is possible to correlate the alert corresponding to
attack_finger with the virtual alert. In this case, we have
also to satisfy the following condition: Target_address4 =
Target_address2 where Target_address4 is the IP address
of alert corresponding to attack_finger and
Target_address2 is the IP address of the virtual alert. This
condition is satisfied if the alerts corresponding to
attack_mount and attack_finger have a target with the
same IP address.

In our experiment, abduction of an alert corresponding
to attack_rhost succeeds. Therefore, the online correlation
function correlates all the alerts generated by the attack
“ illegal nfs mount” into one single scenario, even though
step 5 of this attack is not detected (see the appendix for a
graphical presentation of the corresponding detection).

6. Conclusion

In this paper, we have presented the approach we
suggest designing the correlation function of CRIM, a
cooperative module for intrusion detection systems. After
specifying an attack base in Lambda, the offline
correlation process analyzes these attack descriptions to
automatically generate a set of correlation rules. The
online correlation process then applies these correlation
rules on the alerts generated by the IDS to recognize more
global attack scenarios.

All the approach (including clustering, merging,
correlation and abductive correlation) has been
implemented in GNU-Prolog [5] with a graphic interface

in Java (see the appendix for a view of this graphical
interface).

It is important to observe that alert correlation is very
useful to reduce the number of false positives. For
instance, notice that separately each step of the intrusion
scenario “ illegal NFS Mount” presented in section 5
might actually correspond to a false positive. It is only
after correlating alerts that we can derive that an intrusion
occurred. Therefore, in many cases, it is possible to
conclude that an alert that is not further correlated with
other alerts is actually a false positive.

There are several issues to this work.
First, we are currently designing the intention

recognition function. The main objective of this function
is to anticipate on how the intruder will go on. To achieve
this objective, we are actually combining two approaches:
• Abductive correlation is used to forecast next step of

the attack scenario. This first approach is based on the
analysis of facts attack_correlation(Attack1,Attack2)
and is therefore simpler than the abductive correlation
process presented in section 5 since virtual alerts are
not generated in this case.

• Specification of global intrusion objectives. This idea
is quite similar to specifying a security policy since we
may assume that the intruder’s objective is to violate
the security policy (at least from a defensive point of
view!). A global intrusion objective might be viewed
as a logical expression describing the target’s state the
intruder wants to achieve. The principal of this second
approach is then to correlate attacks with intrusion
objective (corresponding to the violation of the
security policy). This would guide the intention
recognition process.

Of course, in both cases, the intention recognition
function may provide several possibilities, that is several
“next steps” in the first approach and several possible
intrusion objectives in the second approach. Therefore,
we have also to design an approach to choose the “best”
possibility. This is still an open research problem.

This briefly sketch our approach for the intention
recognition function. We plan to provide more details
about this function in a forthcoming paper.

Second, we plan to encode a larger base of attacks in
LAMBDA. The objective here is to improve the
correlation results but also to check whether it is possible
to use our correlation approach to discover new attack
scenarios by searching how to correlate elementary
attacks.

Finally, notice that the architecture we suggest in this
paper is centralized, the CRIM module receiving all the
alerts generated by the IDS. This is mainly due to
technical constraints since we consider in the MIRADOR
project that it was not practical to directly create
communication between IDS. Such a distributed approach
was suggested in [14]. The authors illustrate their

approach with the Mitnick attack. There are two steps in
this attack. In the first step, the intruder floods a given
host H. Then the intruder sends spoofed messages
corresponding to H address to establish a communication
with a given server S. When S sends an acknowledge to
H, H cannot ask to close the connection since it is
flooded. In a distributed approach, a first IDS can detect
that H is flooded and then asks a second IDS to detect
whether S continues receiving messages with H address.
If this is the case, then we can conclude that the Mitnick
attack is occurring. We agree that this distributed
approach is interesting and we plan to analyze it in the
future.

Acknowledgements

This work was funded by the DGA/CELAR/CASSI as
a part of the Mirador project. The authors would also like
to thank all the members of this project: Jacques
Capoulade, Mamadou Diop, Samuel Dubus, Aldric

Feuillebois (Alcatel CIT), Patrice Carle (ONERA), Ewan
Cochevelou, Sylvain Gombault (ENST-Bretagne),
Laurent Heye, Ludovic Mé and Cédric Michel (SupElec
Rennes).

Annexe 1: Graphical interface

Figure 9 presents a view of CRIM interface. There are
3 sub-windows in this interface. The upper window
provides a view of alerts that are directly generated by the
IDS connected to CRIM or abduced by CRIM (virtual
alerts). The central window corresponds to fusion alerts,
that is alerts generated by the merging function of CRIM.
Finally, the lower window presents the alerts generated by
the online correlation function. It actually shows detection
of the “ Illegal NFS Mount” scenario presented in Section
5. Alertid_1 is a virtual alert corresponding to attack
“MIR-0164” (Modification of .rhost) that is automatically
abduced to complete detection of this scenario.

Figure 9 : Graphical Interface

References

[1] Computer Associates. E-Trust Intrusion
Detection. 2000.

[2] D. Curry and H. Debar. “ Intrusion Detection
Message Exchange Format Data Model and
Extensible Markup Language (XML)
Document Type Definition” . draft-itetf-
idwg-idmef-xml-03.txt, February 2001.

[3] F. Cuppens. “Managing alerts in a multi-
intrusion detection environment” . 17th
Annual Computer Security Applications
Conference (ACSAC). New-Orleans,
December 2001.

[4] F. Cuppens and R. Ortalo. “LAMBDA: A
Language to Model a Database for Detection
of Attacks” . Proceedings of the Third
International Workshop on the Recent
Advances in Intrusion Detection
(RAID’2000), Toulouse, France, October
2000.

[5] M. Diaz. GNU Prolog: A Native Prolog
Compiler with Constraint Solving over
Finite Domains. Edition 1.4 for GNU Prolog
version 1.2.1. http://gnu-
prolog.inria.fr/manual/. July, 2000.

[6] H. Debar and A. Wespi. “The Intrusion-
Detection Console Correlation Mechanism”.
Workshop on the Recent Advances in
Intrusion Detection (RAID’2001), Davis,
USA, October 2001.

 [7] M.-Y. Huang. “A Large-scale Distributed
Intrusion Detection Framework Based on
Attack Strategy Analysis” . Proceedings of
the First International Workshop on the
Recent Advances in Intrusion Detection
(RAID’98), Louvain-La-Neuve, Belgium,
1998.

 [8] K. Kendall. “A Database of Computer Attacks
for the Evaluation of Intrusion Detection
Systems” . June 1999.

 [9] W. Lee. “Combining Knowledge Discovery
and Knowledge Engineering to Build IDSs” .
Proceedings of the Second International
Workshop on the Recent Advances in
Intrusion Detection (RAID’99), Purdue, USA,
October 1999.

[10] R. Lippmann. “Using Key String and Neural
Networks to Reduce False Alarms and Detect
New Attacks with Sniffer-Based Intrusion
Detection Systems” . Proceedings of the
Second International Workshop on the Recent
Advances in Intrusion Detection (RAID’99),
Purdue, USA, October 1999.

 [11] C. Michel and L. Mé. Adele: “an Attack
Description Language for Knowledge-based
Intrusion Detection” . 16th International
Conference on Information Security. Kluwer.
June 2001.

[12] M. Roesch. “Snort – Lightweight Intrusion
Detection for Networks” . Proceedings of
USENIX LISA’99, November 1999.

 [13] A. Valdes and K. Skinner. “Probabilistic Alert
Correlation” . Proceedings of the Fourth
International Workshop on the Recent
Advances in Intrusion Detection
(RAID’2001), Davis, USA, October 2001.

[14] J. Yang, P. Ning, X. Wang, and S. Jajodia.
“CARDS : A Distributed System for Detecting
Coordinated Attacks” . IFIP TC11 Sixteenth
Annual Working Conference on Information
Security, August 2000.

[15] D. Zerkle. „A Data-Mining Analysis of
RTID” . Proceedings of the Second
International Workshop on the Recent
Advances in Intrusion Detection (RAID’99),
Purdue, USA, October 1999.

